Opportunities arising from combined measurements at RHIC and LHC

Gunther Roland (MIT) Thomas Ullrich (BNL/Yale)

Mont Sainte Odile Think Tank Loyola University Monday, February 13, 2017

Massachusetts Institute of Fechnology

Charge and Outline

- In the mid-term future, data from sPhenix and future measurements at LHC will allow for comparative studies of hard processes across an unprecedented wide range of √s. Which opportunities arise from that?
- (1) Future Measurements at LHC
 - defined as post phase-I upgrade (past LS2)
 - ▶ ALICE, CMS, ATLAS, LHCb
- (2) Future Measurement at RHIC (past BES-II)> sPHENIX, STAR
- (3) Opportunities in comparative studies

LHC Plans

Run 2:

- 2017 no heavy-ions
- 2018 heavy-ion run in November
- LS2 (2019/2020)
 - Install phase-I upgrades, mostly ALICE & LHCb
- Only moderate upgrades to ATLAS and CMS Run 3:
 - Focus for our discussion
- LS3 (≳2024):
 - Phase-II upgrades of ATLAS and CMS focusing on High-Luminosity LHC
 - Heavy-lon plans not well defined for Run 4

LHC - Experimental Coverage

ALICE -10 -2 6 10 -8 0 2 8 η ATLAS -10 -8 0 2 6 8 10 -2 -6 η CMS+TOTEM -10 -8 6 8 10 -2 0 2 -6 .4 η LHCb HeRSChel -10 -2 0 2 8 10 4 6 -8 η

hadron PID muon system lumi counters HCAL ECAL tracking

LHC

ALICE Upgrades (I)

ALICE's Intent

Studies following LS2 will focus on rare probes, and the study of their coupling with the medium and hadronization processes. These include heavy-flavour particles, quarkonium states, real and virtual photons, jets and their correlations with other probes

Requirements

- High statistics and high precision measurements are required
- Many of these measurements will involve complex probes at low transverse momentum, where traditional methods for triggering will not be applicable.

Strategy

- After LS2, LHC will reach interaction rates of ~50 kHz
- Upgrade the current detector by enhancing its low-p vertexing and tracking capability
- Modify ALICE detector such that all interactions can be inspected accumulating 10 nb⁻¹ of Pb–Pb collisions

ALICE Upgrades (II)

Electronic & Trigger

 Enable continuous (not triggered) readout to allow recording 50kHz

Online & Offline

 Real time analyses and filtering/compression of all events using massive computing resources

• TPC Upgrade

- Ungated MWPC -> 4 GEM Readout
- Retain current resolutions (p, dE/dx) but allow for higher rates
- New Inner Si Tracker
 - Considerable higher performance than current ITS
 - Higher resolution, higher speed, thin MAPS sensors
- New Forward Si Tracker
 - Augment muon detector performance

ALICE Physics Plans (I)

Central Barrel:

- Yields and azimuthal distributions of hadrons containing heavy quarks (c, b) to study the mechanism of heavy-quark thermalization in the QGP.
- Production of quarkonia at low p_T, in particular the study of their possible dissociation and regeneration mechanisms in the QGP.
- Low-mass dielectron production to extract information on early temperature and the partonic equation of state, and to characterize the chiral phase transition.
- Jets and jet correlations, in particular their structure and particle composition, to study the mechanism of partonic energy loss in medium and its dependence on parton color-charge, mass and energy.
- The production of nuclei, anti-nuclei and hyper-nuclei as well as exotic hadronic states such as the H-dibaryon.

ALICE Physics Plans (II)

Forward (MFT + Muon Arm):

- Evaluate the medium temperature and study charmonium dissociation and regeneration mechanisms via measurements of prompt J/psi and psi; production and elliptic flow;
- Pin down the medium equation of state and study the degree of thermalization of heavy quarks in the medium via measurements of heavy flavour and charmonium elliptic flow;
- Extract the energy density of the medium, the color charge and mass dependence of parton in-medium energy loss via measurements of
 - heavy quark production separately for charm and beauty in the single muon channel;
 - > J/psi from b-hadrons decay.
- Investigate the chiral nature of the phase transition via measurements of low mass vector mesons.

ALICE Run 3 Physics (General)

Physics		A	Approved	Upgrade		
Reach:	Observable	$p_{\rm T}^{\rm Amin}$ (GeV/c)	statistical uncertainty	$p_{\rm T}^{\rm Umin}$ (GeV/c)	statistical uncertainty	
Reach.		Heavy Flavour				
	D meson R_{AA}	1	10 % at $p_{\rm T}^{\rm Amin}$	0	0.3 % at $p_{\rm T}^{\rm Amin}$	
	D meson from B decays R_{AA}	3	30 % at $p_{\rm T}^{\rm Amin}$	2	1 % at $p_{\rm T}^{\rm Amin}$	
	D meson elliptic flow ($v_2 = 0.2$)	1	50 % at $p_{\rm T}^{\rm Amin}$	0	2.5 % at $p_{\rm T}^{\rm Amin}$	
	D from B elliptic flow ($v_2 = 0.1$)	not	taccessible	2	20 % at $p_{\rm T}^{\rm Umin}$	
	Charm baryon-to-meson ratio	not	t accessible	2	15 % at $p_{\rm T}^{\rm Umin}$	
	$D_s \operatorname{meson} R_{AA}$	4	15 % at $p_{\rm T}^{\rm Amin}$	1	1 % at $p_{\rm T}^{\rm Amin}$	
	Charmonia					
	$J/\psi R_{AA}$ (forward rapidity)	0	1 % at 1 GeV/ <i>c</i>	0	0.3 % at 1 GeV/c	
	$J/\psi R_{AA}$ (mid-rapidity)	0	5% at 1 GeV/ <i>c</i>	0	0.5 % at 1 GeV/c	
	J/ ψ elliptic flow ($v_2 = 0.1$)	0	15 % at 2 GeV/c	0	5 % at 2 GeV/ <i>c</i>	
	$\psi(2S)$ yield	0	30 %	0	10%	
	Dielectrons					
	Temperature (intermediate mass)	not accessible			10 %	
	Elliptic flow ($v_2 = 0.1$)	not accessible			10%	
	Low-mass spectral function	not accessible		0.3	20%	
	Heavy Nuclear States					
	Hyper(anti)nuclei ${}^{4}_{\Lambda}$ H yield		35 %		3.5 %	
	Hyper(anti)nuclei ${}^{4}_{\Lambda\Lambda}$ H yield	not	accessible		20%	

ALICE Run 3 Physics (ITS)

Physics		Currer	$ht, 0.1 hb^{-1}$	Upgrad	le, $10 {\rm nb}^{-1}$	
Deceb	Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	
Reach:		(GeV/c)	uncertainty	(GeV/c)	uncertainty	
	Heavy Flavour					
	D meson $R_{\rm AA}$	1	10%	0	0.3%	
	$D_s meson R_{AA}$	4	15%	< 2	3%	
	D meson from B R_{AA}	3	30%	2	1%	
	${\rm J}/\psi$ from B $R_{\rm AA}$	1.5	15% (p_T-int.)	1	5%	
	B^+ yield	not a	accessible	3	10%	
	$\Lambda_{ m c} R_{ m AA}$	not accessible		2	15%	
	$\Lambda_{\rm c}/{ m D}^0$ ratio	not accessible		2	15%	
	$\Lambda_{\rm b}$ yield	not accessible		7	20%	
	D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%	
	$D_{\rm s} {\rm meson} v_2 (v_2 = 0.2)$	not accessible		< 2	8%	
	D from B $v_2 (v_2 = 0.05)$	not a	not accessible		8%	
	J/ψ from B $v_2 \ (v_2 = 0.05)$	not accessible		1	60%	
	$\Lambda_{\rm c} \ v_2 \ (v_2 = 0.15)$	not accessible		3	20%	
		Dielectro	ons			
	Temperature (intermediate mass)	not accessible			10%	
	Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%	
	Low-mass spectral function [4]	not a	accessible	0.3	20%	
		Hypernuc	elei			
	$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%	

ALICE Run 3 Physics (MFT+Muon Arm)

Physics Reach:

Observable	$p_{\mathrm{T}} ext{-}\mathrm{coverage}~(\mathrm{GeV}/c)$
Charm	
Prompt $J/\psi~-R_{ m AA}$ & v_2	$p_{ m T}(J/\psi)>0$
$\psi({ m 2S})~-R_{ m AA}$	$p_{\mathrm{T}}(\psi')>0$
μ from <i>c</i> -hadron decays – $R_{\rm AA}$ & v_2	$p_{\mathrm{T}}(\mu) > 1$

Beauty

Non-prompt J/ψ – $R_{\rm AA}$ & v_2	$p_{\mathrm{T}}(J/\psi) > 0$
μ from $b\text{-hadron}$ decays – $R_{\rm AA}$ & v_2	$p_{ m T}(\mu)>3$

Chiral symmetry and QGP temperature

Light vector mesons spectral functions and QGP thermal radiation $p_{\rm T}(\mu\mu) > 1$

ALICE Running

A *possible* running scenario for the operation of the upgraded ALICE detector could be the following:

- 2019: Pb-Pb 2.85 nb⁻¹
- 2020: Pb-Pb 2.85 nb⁻¹ at low magnetic field
- 2021: pp reference run
- 2022: LS3
- 2023: LS3
- 2024: Pb-Pb 2.85 nb⁻¹
- 2025: 50% Pb-Pb 1.42 nb⁻¹ + 50% p-Pb 50 nb⁻¹
- 2026: Pb-Pb 2.85 nb⁻¹

LHCb Upgrades

Intent

- Focus on core pp program
- Overcome limit of about few fb⁻¹ of data per year
- ▶ 1.1 MHz \rightarrow 40 MHz
- Strategy
 - Replacing all the front-end electronics
 - New RICH detector
 - New VELO defector (Si tracking close to vertex)
 - Tracking: new, high-granularity silicon micro-strip planes and (behind the magnet) a Scintillating Fibre Tracker

Heavy-lons

- Growing interest in nuclear beams, although small community
- By now an active p-Pb program
- First Pb-Pb running in 2015 up to semi-central collisions
- Fixed target mode: p-Gas and Pb-Gas
- Upgrades improved Pb–Pb centrality reach

LHCb Kinematic and Reach

Can operate in parallel collider and fixed target mode

ATLAS Upgrades

Intent

- Improvements to cope with luminosities beyond the LHC nominal design value, while retaining the same physics performance.
- Phase-I upgrades will allow ATLAS to maintain low p_T trigger thresholds
- New set of very far forward detectors to explore diffractive physics

Heavy-lons

Program will benefit from improved all silicon tracker, higher granularity triggering on jets/electrons/photons, track triggers, topology triggers, improved muon tracker esp. in forward region, upgraded ZDC)

ATLAS in Run 3

- ATLAS (and CMS) can make full use of luminosity and improve on statistics hungry processes and increase p_T reach
 - Jet suppression, nPDF effects on W/Z/γ
 - γ+jet and Z+jet are very interesting channels and are also always statistics-limited.
 - Some important UPC channels (e.g. light-by-light scattering)
- Light ions are of particular interest but little interest from other experiments (so far).
 - Preference would be Ar+Ar, which would be of use to soft physics program (changing geometric fluctuations)

Backup Slides

ALICE - Open Charm (I)

Figure 8.2: $D^0 \rightarrow K^-\pi^+$: comparison of the significance (left) and signal-to-background ratio (right) obtained for the current and upgraded ITS. The box indicates the systematic uncertainty of the estimate for the interval $0 < p_T < 1 \text{ GeV}/c$.

ALICE - Open Charm (II)

Figure 8.3: Relative systematic uncertainties on R_{AA} of prompt D⁰ mesons.

Figure 8.4: D^{*+} statistical significance, normalized to one event, for Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.5 \,\text{TeV}$ in the centrality class 0–10%, with the upgraded ITS.

ALICE - Open Charm (III)

Figure 2.20: Estimated statistical uncertainties on v_2 of prompt and secondary D⁰ mesons for $1.7 \cdot 10^{10}$ events (left) in the 30–50% centrality class, which correspond to 10 nb⁻¹, and for $1.7 \cdot 10^8$ events (right), which correspond to about 0.1 nb⁻¹.

ALICE - Open Charm (IV)

Figure 8.18: Nuclear modification factor of D^0 (top-left), D^{*+} (top-right), D^+_s (bottom-left, only statistical uncertainties) and Λ^+_c (bottom-right) for central Pb–Pb collisions ($L_{int} = 10 \text{ nb}^{-1}$).

ALICE - Open Charm (V)

Figure 8.22: Projected D-jet fragmentation z distribution for 50 GeV/c c quark jets in central (0-10%) Pb–Pb collisions for the current detector for 1 nb^{-1} and upgraded detector for 10 nb^{-1} (left). Comparison of the total uncertainties (systematic and statistical added in quadrature) for the two cases (right).

ALICE - Charm Baryons (I)

Figure 8.14: $\Lambda_c \to pK\pi$ in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.5$ TeV: significance (left) and S/B ratio (right) as a function of $p_{\rm T}$. The significance is scaled to 1.6×10^{10} events, which correspond to the statistics in the centrality class 0–20 % for $L_{\rm int} = 10 \,\mathrm{nb}^{-1}$.

ALICE - Charm Baryons (II)

Figure 2.19: Left: estimated statistical uncertainties on the measurement of the Λ_c/D^0 ratio using 1.7×10^{10} central Pb–Pb collisions (0–20%), corresponding to an integrated luminosity of 10 nb⁻¹. The points are drawn on a line that captures the trend and magnitude of the Λ/K_s^0 ratio (see Figure 2.4). The pp expectation from the PYTHIA 6.4.21 generator [46] is also shown. Right: enhancement of the Λ_c/D ratio in central Pb–Pb with respect to pp collisions. Two model calculations [24, 27] are also shown.

ALICE - Beauty (I)

Figure 8.21: v_2 of D⁰, D⁺_s and Λ_c (left) and of D⁰ and J/ ψ from B decays (right) with estimated statistical uncertainties for $L_{\text{int}} = 10 \text{ nb}^{-1}$.

ALICE - Beauty (II)

Figure 8.6: Impact parameter distributions for prompt and secondary (from B decays) D^0 obtained with the current and upgraded ITS configurations in the interval $2 < p_T < 3 \text{ GeV}/c$ (left). Impact parameter resolution as a function of p_T (right).

ALICE - Beauty (III)

Figure 8.19: Nuclear modification factor of D⁰ from B decays (left) and J/ψ from B decays (right, only statistical uncertainties) for central Pb–Pb collisions ($L_{int} = 10 \text{ nb}^{-1}$).

ALICE - Beauty (IV)

Figure 8.13: $B^+ \to \overline{D}^0 \pi^+$ in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$: the significance (left) is scaled to 8×10^9 events for 0–10% centrality, corresponding to $L_{int} = 10 \text{ nb}^{-1}$. The signal-to-background ratio is shown on the right.

ALICE - Beauty (V)

Figure 8.7: Relative statistical and systematic uncertainties on the fraction $f_{\text{feed-down}}$ of D⁰ mesons from B decays, with the upgraded ITS in the centrality class 0–10 % for $L_{\text{int}} = 10 \text{ nb}^{-1}$. The statistical uncertainty is multiplied by 10 for better visibility.

ALICE - Beauty Baryons

Figure 8.17: $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c}^+ \pi^-$ in Pb–Pb collisions at $\sqrt{s_{\rm NN}} = 5.5 \,\text{TeV}$: significance for $L_{\rm int} = 10 \,\text{nb}^{-1}$ (left) and S/B ratio (right) as a function of $p_{\rm T}$.

ALICE - Quarkonia (I)

Figure 8.8: Left: Pseudo-proper decay length distribution for prompt J/ψ for the current and new ITS (*Hybrid* method). Right: Resolution as a function of p_T for the current and new ITS (*Hybrid* and full simulation).

ALICE - Quarkonia (II)

Figure 2.37: The statistical accuracy of the J/ψ yield measurement in the Central Barrel as a function of transverse momentum for three centrality classes. The full symbols are for electron identification employing only the TPC, the open ones for including also TRD.

ALICE - Quarkonia (III)

Figure 2.38: The absolute statistical error of the elliptic flow of J/ψ as a function of transverse momentum for the measurement with the Muon Spectrometer (left panel, centrality range 20-60%) and for the Central Barrel (right panel, centrality range 10-40%).

ALICE - Quarkonia (IV)

Figure 2.41: Centrality dependence of the relative statistical error of the low $p_T J/\psi$ yield excess measured in Pb-Pb collisions at LHC energies.

ALICE - Quarkonia (V)

Figure 2.42: The estimated relative statistical error of the $\psi(2S)$ measurement in the Muon Spectrometer as a function of centrality for an integrated luminosity of 1 nb⁻¹ and 10 nb⁻¹. Two scenarios are considered: the statistical model prediction (left panel) pp scaling (right panel).

ALICE - Quarkonia (VI)

Figure 2.39: Absolute statistical error of the J/ ψ polarization parameters λ_{θ} (left panel) and λ_{ϕ} (right panel) as a function of centrality, measured with the Muon Spectrometer for 1 nb⁻¹ and 10 nb⁻¹.

ALICE - Jets and Photons (I)

Figure 2.64: Jet yield and number of produced jet-pairs above (leading) p_T -threshold for 0-10% most central Pb–Pb events. The yields are obtained by geometry (T_{AA}) scaled PYTHIA8 simulations, no quenching effects have been considered. Left: After the upgrade. Right: Before the upgrade and with TPC rate limitations in case of the charged jet reconstruction, i.e. no additional triggering on charged jets.

ALICE - Jets and Photons (II)

Figure 2.67: Direct photon yield and number of detectable γ -jets above p_T -threshold for 0-10% most central Pb–Pb events. The yields are obtained by geometry (T_{AA}) scaled PYTHIA8 simulations. Left: Upgrade scenario. Right: Without upgrade and with TPC rate limitations. In the photon conversion technique reduced reconstruction efficiency due to material thickness has been considered.

ALICE - Jets and Photons (III)

Figure 2.66: Left: Signal-to-background ratio of direct photons to expected decay photons. The suppression of the decay background in heavy-ion collisions has been taken into account by scaling the PYTHIA hadron decay simulation with the measured hadron R_{AA} where available. Right: Projected $n\sigma$ separation of direct photon signal in central Pb–Pb collisions at 5.5 TeV in the double ratio. Systematical (7%) and statistical uncertainties have been combined. The measured hadron R_{AA} in central Pb–Pb collisions at 2.76 TeV has been used to scale the decay background.

LHCb - Fixed Target (SMOG)

- → SMOG: System for Measuring Overlap with Gas:
 - Main use so far for precise luminosity determination
 - Low density noble gas injected in the VELO, in the interaction region
 - Only local temporary degradation of LHC vacuum

eam I - Beam 2, Beam I - Gas, Beam 2 - Gas.

□ pNe pilot run at $\sqrt{s_{NN}} = 87 \text{ GeV} (2012) \sim 30 \text{ min}$ □ PbNe pilot run at $\sqrt{s_{NN}} = 54 \text{ GeV} (2013) \sim 30 \text{min}$ □ pNe run at $\sqrt{s_{NN}} = 110 \text{ GeV} (2015) \sim 12 \text{h}$ □ pHe run at $\sqrt{s_{NN}} = 110 \text{ GeV} (2015) \sim 8 \text{h}$ □ pAr run at $\sqrt{s_{NN}} = 110 \text{ GeV} (2015) \sim 3 \text{ days}$ □ pAr run at $\sqrt{s_{NN}} = 69 \text{ GeV} (2015) \sim 7 \text{ few hours}$ □ PbAr run at $\sqrt{s_{NN}} = 69 \text{ GeV} (2015) \sim 1.5 \text{ week}$ □ pHe run at $\sqrt{s_{NN}} = 110 \text{ GeV} (2016) \sim 2 \text{ days}$

Preferred target Gas

	He	Ne	Ar	Kr	Xe
Α	4	20	40	84	131