Baryon-Strangeness Correlations

- Introduction
- •BS and other correlations
- Some speculations

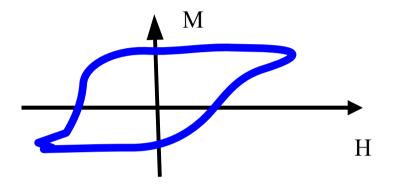
Work in collaboration with: A. Majumder and J. Randrup

Susceptibilities

$$E = E_0 + mH + \mu Q$$

$$\langle m \rangle = \frac{dF}{dH}$$

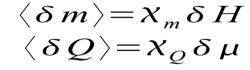
$$\langle Q \rangle = \frac{dF}{d\mu}$$



Susceptibilities

$$\chi_{m} = \frac{d^{2} F}{d H^{2}}$$

$$\chi_{Q} = \frac{d^{2} F}{d \mu^{2}}$$



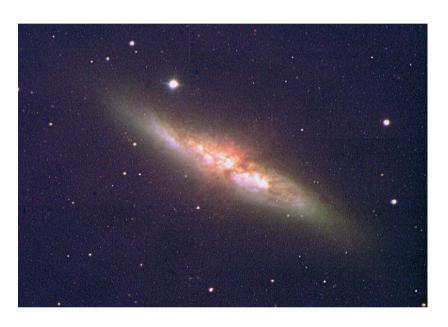
Linear response

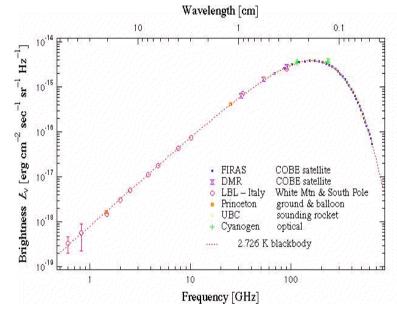
$$\langle (\delta m)^2 \rangle = \chi_m$$

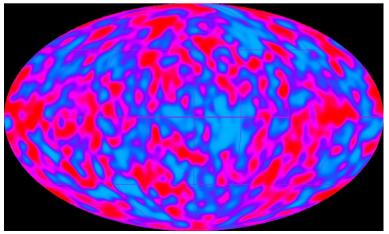
 $\langle (\delta Q)^2 \rangle = \chi_Q$

Fluctuations

The mother of all thermal spectra and fluctuations

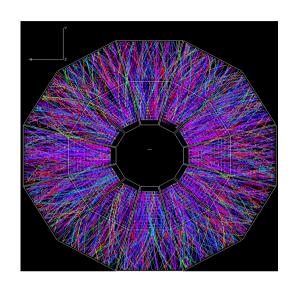


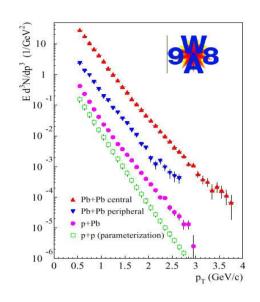




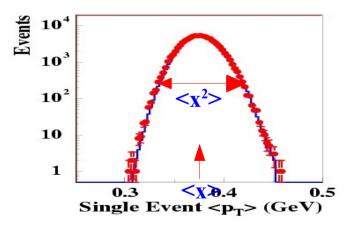
Fluctuations at the level of 10⁻⁵!!!

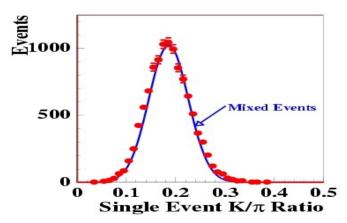
Heavy Ions: Event-by-Event





NA49 Pb+Pb Event-by-Event Fluctuations





E-by-E measures 2-particle correlations

Fluctuations in thermal system

e.g. Lattice QCD

$$Z = Tr\left[\exp\left(-\beta\left(H - \mu_Q Q - \mu_B B - \mu_S S\right)\right)\right]$$

Mean:
$$\langle X \rangle = T \frac{\partial}{\partial \mu_X} \log(Z) = -\frac{\partial}{\partial \mu_X} F$$

$$X = Q$$
 , B , S

Variance:
$$\langle (\delta X)^2 \rangle = T^2 \frac{\partial^2}{\partial \mu_X^2} \log(Z) = -T \frac{\partial^2}{\partial \mu_X^2} F$$

Co-Variance:
$$\langle (\delta X)(\delta Y) \rangle = T^2 \frac{\partial^2}{\partial \mu_X \partial \mu_Y} \log(Z) = -T \frac{\partial^2}{\partial \mu_X \partial \mu_Y} F$$

Susceptibility:
$$\chi_{XY} = -\frac{1}{V} \frac{\partial^2}{\partial \mu_X \partial \mu_Y} F = -\frac{1}{V} \frac{\partial}{\partial \mu_X} \langle Y \rangle$$

Simple Observation

Or how can we test the sQGP

Simple QGP: strangeness is carried by strange quarks

Baryon Number and Strangeness are correlated

Hadron Gas: strangeness is carried mostly by mesons

Baryon Number and Strangeness are uncorrelated

Bound state QGP: strangeness is carried by partonic bound states

Baryon Number and Strangeness should be uncorrelated

<BS> and the Bound State QGP

Define:
$$C_{BS} \equiv -3 \frac{\langle (\delta B)(\delta S) \rangle}{\langle (\delta S)^2 \rangle} = -3 \frac{\langle (B - \langle B \rangle)(S - \langle S \rangle) \rangle}{\langle (S - \langle S \rangle)^2 \rangle} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle} = -3 \frac{X_{BS}}{X_{SS}}$$

In Experiment

$$C_{BS} = -3 \frac{\frac{1}{N_{eve.}} \sum_{i} B_{i} S_{i} - \frac{1}{N_{eve.}^{2}} \sum_{i} B_{i} \sum_{j} S_{j}}{\frac{1}{N_{eve.}} \sum_{i} S_{i}^{2} - \frac{1}{N_{eve.}^{2}} \sum_{i} S_{i} \sum_{j} S_{j}}$$

(-3) compensates baryon-number and strangenes of quarks

Uncorrelated particles:

$$C_{BS} = -3 \frac{\sum_{i} \langle N_{i} \rangle S_{i} B_{i}}{\sum_{i} \langle N_{i} \rangle S_{i}^{2}}$$

Simple estimates

$$C_{BS} = \frac{-3 \langle BS \rangle}{\langle S^2 \rangle}$$

In a QGP phase

$$-3\langle BS\rangle = \langle n_s \rangle + \langle n_s \rangle$$

$$\langle S^2 \rangle = \langle n_s \rangle + \langle n_{\overline{s}} \rangle$$

At all T and µ

$$C_{BS} = 1$$

In hadron gas phase

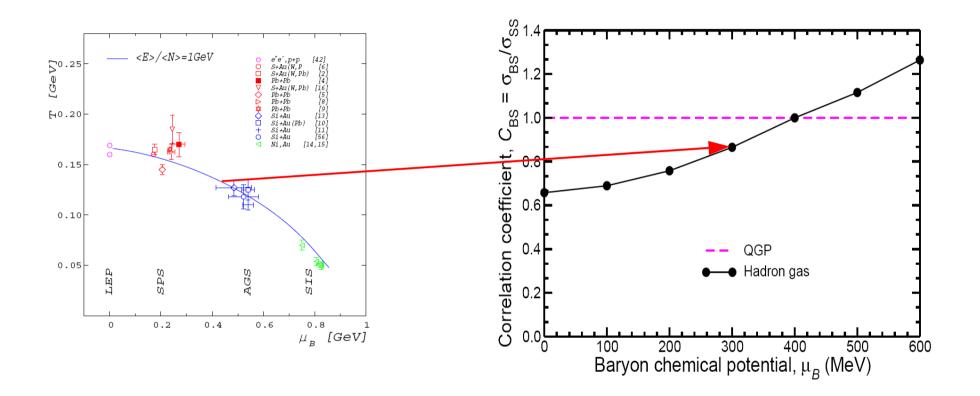
$$-3\langle BS \rangle = 3[\Lambda + \overline{\Lambda} + \Sigma + \overline{\Sigma} + \dots] +6[\Xi + \overline{\Xi} + \dots] + 9[\Omega + \dots]$$

$$\langle S^2 \rangle = K^+ + K^- + K^0 + \Lambda + \overline{\Lambda} + \dots$$

At T=170MeV, $\mu=0$

$$C_{BS} = 0.66$$

Hadron gas



At large μ : $N(K^+) = N(\Lambda + \Sigma)$

$$C_{BS} = 3 \frac{\Lambda + \Sigma}{K^+ + \Lambda + \Sigma} = \frac{3}{2}$$
 at large μ

The Bound State QGP

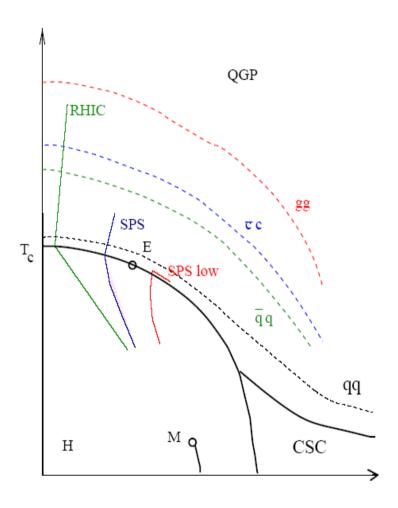


TABLE I. Binary attractive channels discussed in this work, the subscripts s, c, and f mean spin, color, and flavor; $N_f = 3$ is the number of relevant flavors.

Channel	Representation	Charge factor	No. of states
gg	1	9/4	9,
gg	8	9/8	$9_s * 16$
$qg + \bar{q}g$	3	9/8	$3_c * 6_s * 2 * N_f$
$qg + \bar{q}g$	6	3/8	$6_c * 6_s * 2 * N$
āq	1	1	$8_{\epsilon} * N_{\ell}^{2}$
$qq + \bar{q}\bar{q}$	3	1/2	$4_s * 3_c * 2 * N$

Gluon-Gluon states do not contribute!

C_{BS} in bound state QGP

- Heavy quark, antiquark quasiparticles: $C_{BS} = 1$
- Quark gluon states (color triplet, 36 states): $C_{BS} = 1$
- Quark-antiquark states: 8π like, 24 ρ like: $C_{RS} = 0$

$$T=1.5Tc$$
, $C_{BS}=0.61$

Similar to Hadron gas estimate...

Estimates from the Lattice

$$\langle BS \rangle = \frac{T}{V} \frac{\partial}{\partial \mu_B} \frac{\partial}{\partial \mu_S} \log(Z)_{\mu_B=0} = X_{BS}$$

$$C_{BS} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle} = -3 \frac{\left\langle \frac{1}{3} (u + d + s)(-s) \right\rangle}{\langle S^2 \rangle} = \frac{X_{ss} + X_{us} + X_{ds}}{X_{ss}} = 1 + \frac{X_{us} + X_{ds}}{X_{ss}}$$

Calculated by (quenched): R.V. Gavai, S. Gupta, Phys.Rev.D66:094510,2002

At T = 1.5 Tc
$$X_{us} \approx X_{ds} \ll X_{ss}$$

$$C_{BS} = 1 + 0.00(3)/0.53(1)$$

Essential result: off-diagonal susceptibilities << diagonal susceptibilities

Results

Hadron Gas

$$C_{BS} = 0.66$$

Bound State QGP

$$C_{BS} = 0.62$$

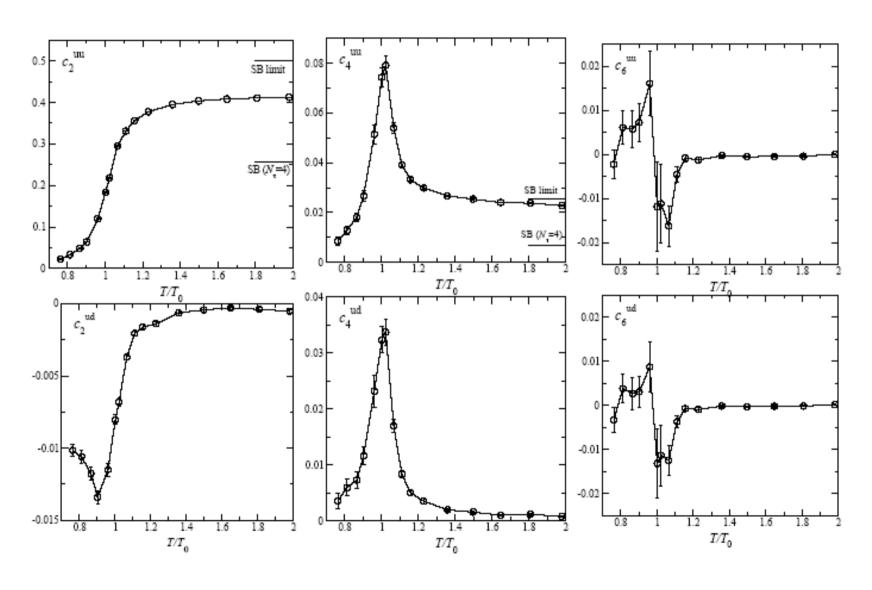
• Independent quarks $C_{BS} = 1$

Lattice QCD

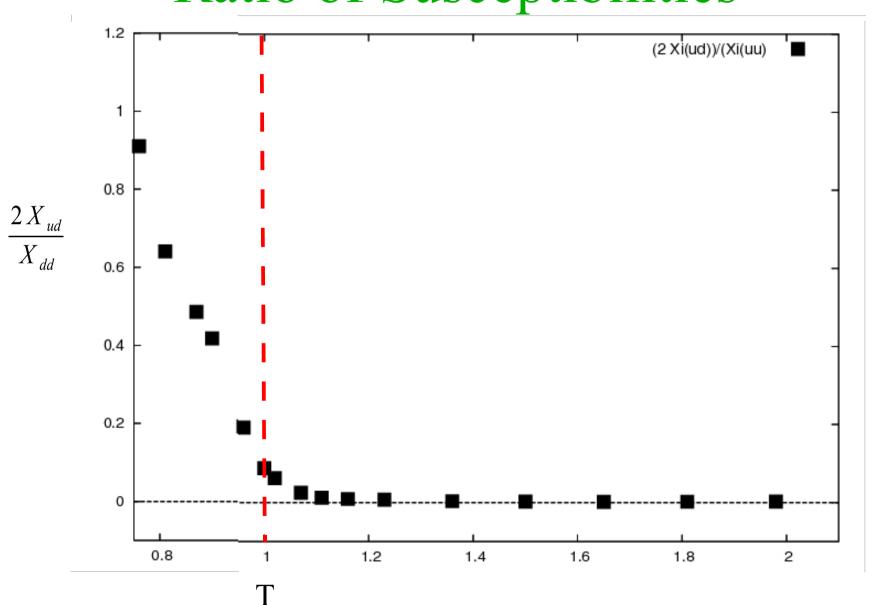
$$C_{BS} = 1$$

Full QCD, but with 2 flavors, gives similar insight!

$$\frac{X(T, \mu_q)}{T^2} = 2c_2 + 12c_4 \left(\frac{\mu_q}{T}\right)^2 + 30c_6 \left(\frac{\mu_q}{T}\right)^4 + \dots$$



Ratio of Susceptibilities



Correlations and Lattice

(quenched) Lattice QCD:

$$X_{ud} = X_{us} = X_{ds} \approx 0$$

NO cross correlations among quark flavors!

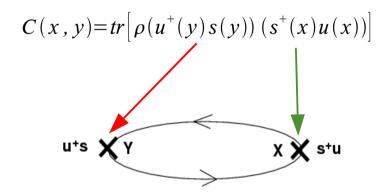
quark – anti-quark bound states?

Strongly interacting QGP??? Why are there no correlations?

Quarks appear to be independent Quasi-Particles

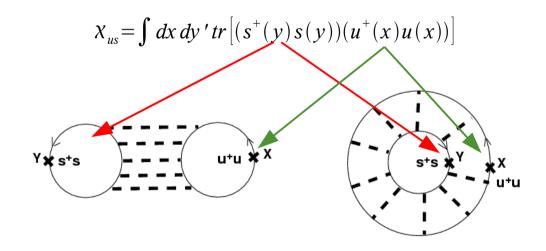
Bound states and off-diagonal Susceptibilities

Correlator:



Measure for mass, correlation length of bound state

Susceptibility (χ_{us})



"Simply" counts number of bound states

Some issues

- No statement about gluon bound states
- No statement about quark gluon bound states
- No statement about the heavy states (> 1.5 GeV) seen in correlation functions (Hatsuda et al, Karsch et al.)
 - Susceptibilities only measure the bulk!
 - Possibly collective modes ????? (G. Brown, QM 04)

Ways out...

- •As many quark-quark states as quark-antiquark states
 - Not consistent with Shuryak model
 - Problem with higher order susceptibilities
 (Ejiri et al. hep-ph/0509051

- •Large width of bound states
 - ~1 % correction is allowed by lattice
 - What is a bound state with large width?

Measuring C_{BS}

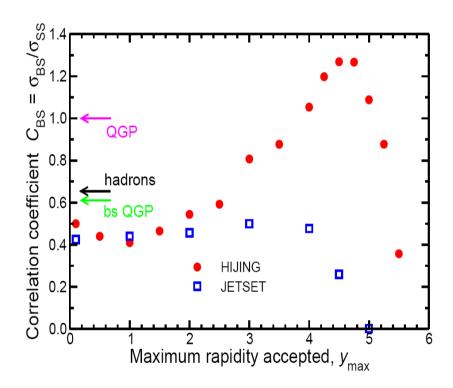
C_{BS} can be measured in principle

Advantages:

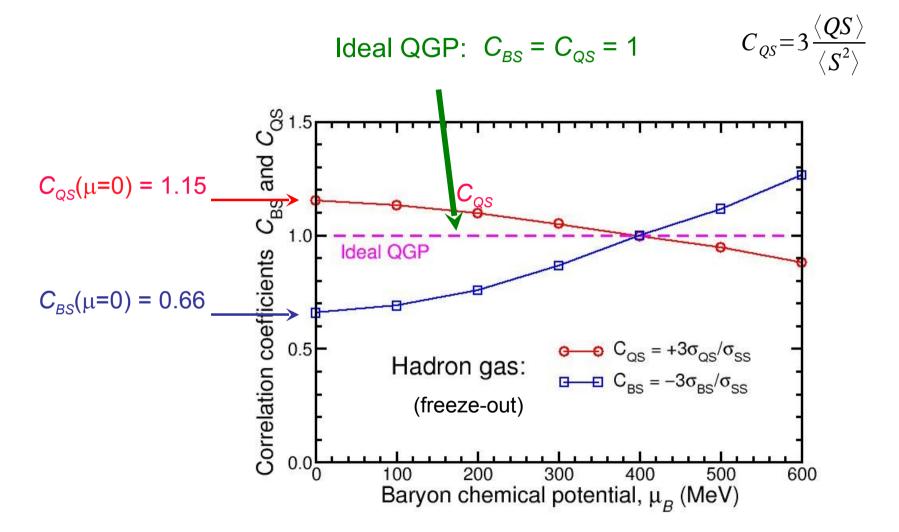
- Conserved quantities
- "Heavy" particles
 - Less uncertainty due to hadronization

Issues:

- Baryon number (neutrons)
- Weak decay corrections for strangeness

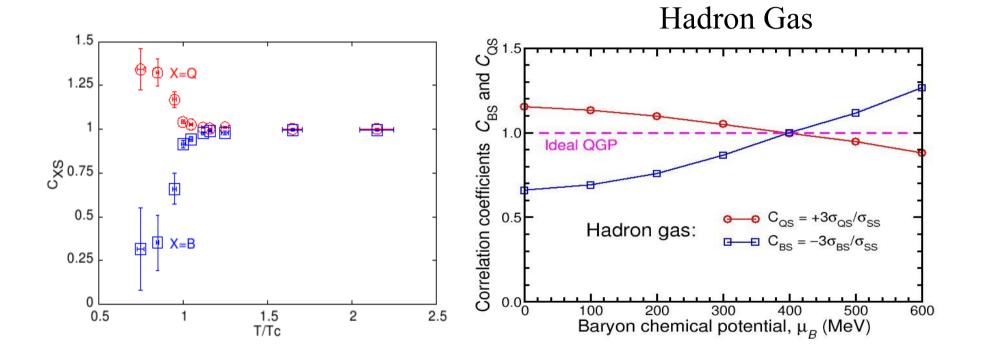


Alternative: C_{QS}



J. Randrup Panic '05

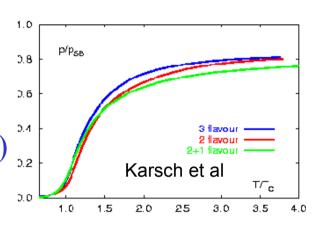
C_{QS} continued



Gavai, Gupta, hep-lat/0510044

Speculations!

- Pressure in LQCD < ideal gas
- Lattice suggests a quasi-particle picture for QGP
- Lattice EOS requires massive quasi-particle
- This suggests a **repulsive** mean field (~500 MeV!!!)
- A repulsive mean field generates **flow!**
- RHIC data possibly consistent with large viscosity



•Alternative:

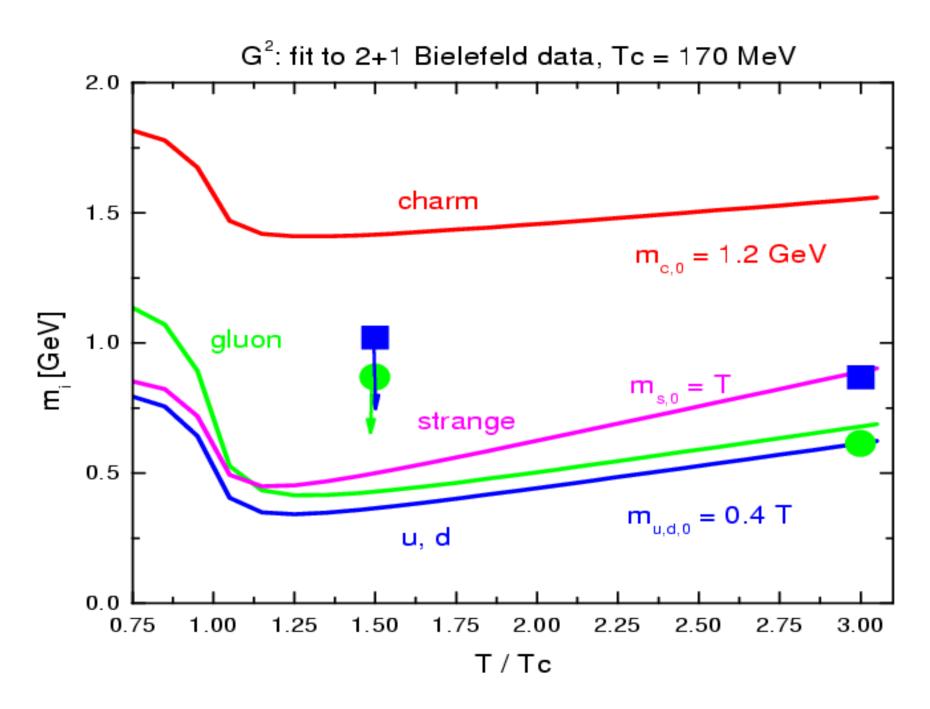
Glue has low viscosity and quarks tag along

A. Peshier, B. Kampfer and G. Soff, Phys.Rev. D66:094003,2002.

J. P. Blaizot, E. Iancu and A. Rebhan, Phys.Rev. D63:065003,2001.

Summary

- BS correlation valuable diagnostic for structure of matter
- BS correlations impose strong limit on existence of bound states in the QCP
- Lattice QCD consistent with quasi-particle quarks
- Higher order "susceptibilities" need to be analyzed as well
- Mean field? Flow? High Viscosity? ?????

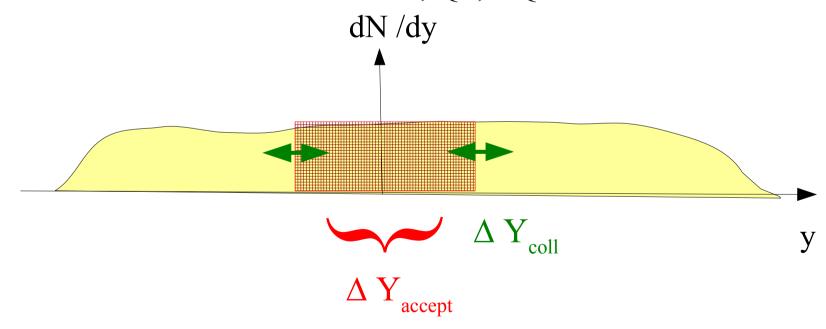


B. Kaempfer, SQM 2004

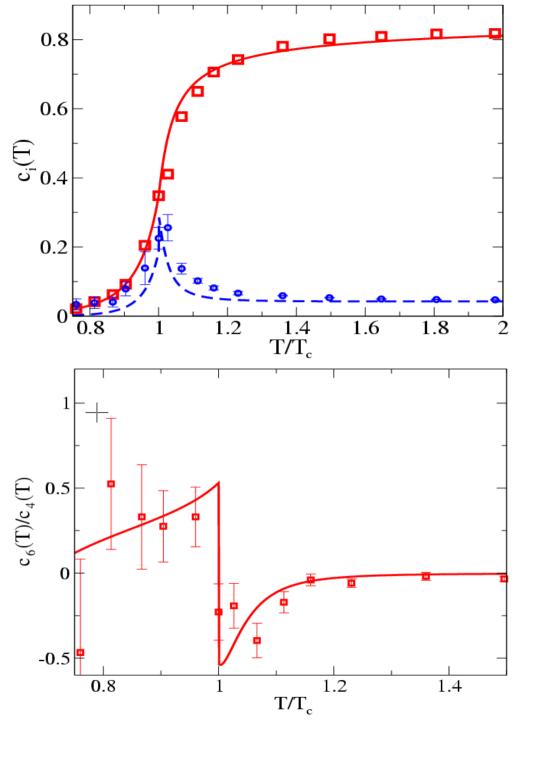
Fluctuations of conserved quantities

Quantum numbers conserved in Heavy ion collisions:

- Baryon number B (exactly)
- Charge Q (exactly)
- Strangeness S (almost!)
- Combinations are also conserved : BS, QS, BQ etc.

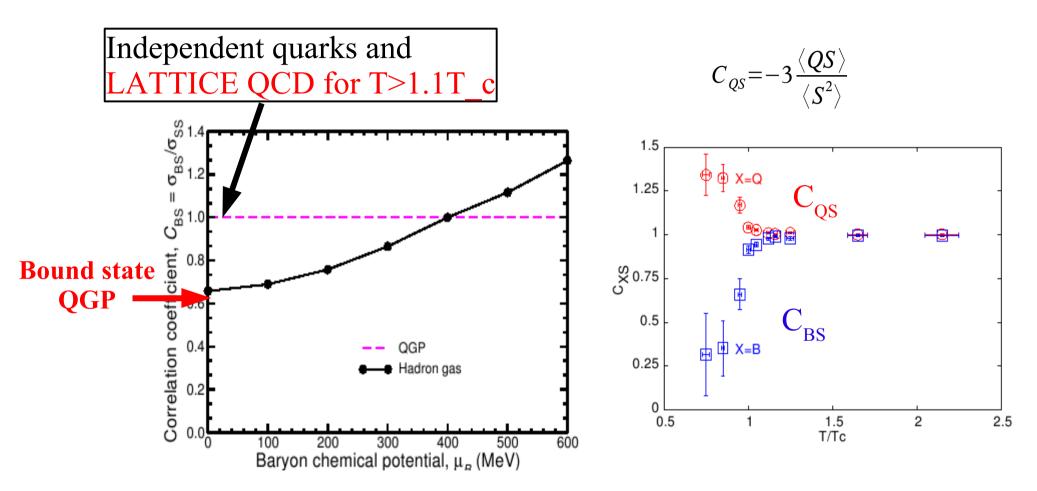


Condition for charge fluctuations: $\Delta Y_{total} >> \Delta Y_{accept} >> \Delta Y_{coll}$



Quasi-particle model by Bluhm et al, hep-ph/0411106

<BS> continued



V.K, Majumder, Randrup PRL95:182301,2005

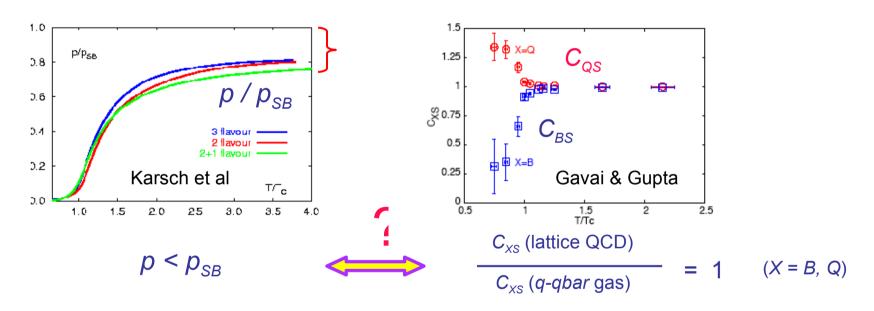
Gavai, Gupta, hep-lat/0510044

Speculation / conjecture

Lattice gauge calculations show that ..

.. the QGP is *not* an ideal quark-gluon gas:

.. the quarks and antiquarks in QGP behave as *independent* particles:



This apparent inconsistency might be resolved in a *mean-field* picture:

The quark acquires an *effective mass* by the medium: $m^{\uparrow} \Rightarrow p^{\downarrow}$

The associated repulsive interaction may contribute to the *flow*